
Factor Graph Tutorial

HU, Pili∗

Feb 29, 2012†

Abstract

Factor graph is one general problem solving technique (personally, I
prefer to call it a technique rather than a model). It can solve marginal-
ization problem very efficiently. Our traditional model, which involve
probability marginalization, like Hidden Markov Model, Bayesian Net-
work, Markov Random Field, etc, can all be translated into a factor
graph representation. This article first constructs a toy motivating ex-
ample to show the benefit of using factor graph. With the observation
from the examples, factor graph is deduced. Notations, definitions,
and descriptions mainly follow the original works, [4] [3]. Then we
present two selected applications of FG, one for modeing underlying
system dynamics[5] , and the other for modeling influence in social
network[7]. We end this article by relating factor graphs to other ex-
isting graphical models and algorithms, together with some discussion.

∗hupili [at] ie [dot] cuhk [dot] edu [dot] hk
†Last compile:March 30, 2012

1

Contents

1 A Motivating Example 3
1.1 Marginalization Problem . 3
1.2 Inference Problem . 3
1.3 Inference with Four Binary Variables 4

1.3.1 Search Max on Joint Distribution Directly 4
1.3.2 Search Max Intelligently 5
1.3.3 Observation . 6

1.4 Inference with One Observed Variable 7
1.4.1 Naive . 7
1.4.2 Intelligent . 7
1.4.3 Observation . 8

2 Factor Graph 9
2.1 Specification . 9
2.2 Transformation . 9
2.3 Parallelization . 10

3 Selected Applications 11
3.1 Model System Dynamics . 11

3.1.1 Quick Note of the Main Idea 11
3.1.2 Comments . 13

3.2 Solving Marginalization Problem in Social Network 14
3.2.1 Quick Note of the Main Idea 14
3.2.2 Comments . 15

3.3 Short Summary on the Application of FG 17

4 Other Taste of Modeling 17
4.1 Coding . 17
4.2 Subgame Perfect Equilibrium 18

5 Related Models/Algorithms 18

6 Discussions 20

2

1 A Motivating Example

1.1 Marginalization Problem

Consider a joint probability distribution:

p(~x) (1)

where ~x = {x1, x2, . . . , xn}.
Marginalization operator:

p1(x1) =
∑
x2

. . .
∑
xn−1

∑
xn

p(~x) (2)

Assuming discrete variable. For continous ones, substitute sum with integral
accordingly.

For simplicity of notation, introduce the shorthand ”summary” notation:

p1(x1) =
∑
∼{x1}

p(~x) (3)

=
∑

{x2,x3,...,xn}

p(~x) (4)

=
∑
x2

. . .
∑
xn−1

∑
xn

p(~x) (5)

The marginalization problem is defined as: Given p(~x), find pi(xi). This
problem can be generalized as summary for more than one variables.

1.2 Inference Problem

The inference problem is defined as: Given p(~x, ~y), and the observed value
of ~y, say ~̂y = {ŷ1, ŷ2, . . . , ŷn}, find the most probable configuration of ~x:

~x∗ = arg max
~x
{p(~x|~̂y)} (6)

The conditional probability can be rewritten as:

p(~x|~̂y) =
p(~x, ~̂y)

p(~̂y)
(7)

p(~x|~̂y) ∝ p(~x, ~̂y) (8)

Thus eqn(6) can be rewritten as:

~x∗ = arg max
~x
{p(~x, ~̂y)} (9)

We’ll bridge the gap between the inference problem and marginalization
problem defined above later. Now, we start with a toy example.

3

1.3 Inference with Four Binary Variables

Assume we have a joint distribution p(a, b, c, d). Without any knowledge of
the internal structure of the distribution, we can always write it as:

p(a, b, c, d) = p(a)p(b|a)p(c|a, b)p(d|a, b, c) (10)

Now assume the distribution can be factorized in the following way:

p(a, b, c, d) = p(a)p(b)p(c|b)p(d|c) (11)

We’ll compare two ways of commputing

max
abcd

p(abcd)

using the following data:

p(a) =
[
0.1 0.9

]
(12)

p(b) =
[
0.2 0.8

]
(13)

p(c|b) =

[
0.4 0.6
0.6 0.4

]
(14)

p(d|c) =

[
0.3 0.7
0.8 0.2

]
(15)

1.3.1 Search Max on Joint Distribution Directly

First, we pretend there is no structure information available. Thus a naive
way to compute the max is to evaluate the joint distribution everywhere on
tha complete alphabets of variables, and then get maximum by comparison.

p(abcd) =

abcd Probability

0000 0.0024
0001 0.0056
0010 0.0096
0011 0.0024
0100 0.0144
0101 0.0336
0110 0.0256
0111 0.0064
1000 0.0216
1001 0.0504
1010 0.0864
1011 0.0216
1100 0.1296
1101 0.3024
1110 0.2304
1111 0.0576

(16)

4

p(abcd∗) = max
abcd

p(abcd) (17)

= p(1101) (18)

= 0.3024 (19)

Corresponding computation complexity:

• Function evaluation: 16× 4 = 64

• Product: 16× 3 = 48

• Comparison(for max operator): 15

1.3.2 Search Max Intelligently

Indeed, eqn(11) conveys useful information by the factorization of the joint
probability.

Let’s expand the maximization p(a, b, c, d)

max
abcd
{p(abcd)} = max

abcd
{p(a)p(b)p(c|b)p(d|c)} (20)

= max
a
{p(a)}max

bcd
{p(b)p(c|b)p(d|c)} (21)

= max
a
{p(a)}max

d
{max

bc
{p(b)p(c|b)p(d|c)}} (22)

= max
a
{p(a)}max

d
{max

c
{max

b
{p(b)p(c|b)}p(d|c)}} (23)

max
a
{p(a)} = max

a
fa(a) = 0.9 (24)

max
b
{p(b)p(c|b)} = max

b
fbc(bc) (25)

= max
b

bc Probability

00 0.08
01 0.12
10 0.48(*)
11 0.32(*)

 (26)

=

 c Probability

0 0.48
1 0.32

 (27)

Denote maxb{p(b)p(c|b)} by µbc(c).

5

max
c
{µbc(c)p(d|c)} = max

c
fcd(cd) (28)

= max
c

cd Probability

00 0.144
01 0.336(*)
10 0.256(*)
11 0.064

 (29)

=

 d Probability

0 0.256
1 0.336

 (30)

Denote maxc{µbc(c)p(d|c)} by µcd(d).

max
d
{max

c
{max

b
{p(b)p(c|b)}p(d|c)}} (31)

= max
d
{µcd(d)} (32)

= 0.336 (33)

Thus we get final result:

max
abcd
{p(abcd)} = max

a
{p(a)} ×max

d
{µcd(d)} (34)

= 0.3024 (35)

Again, we calculate the computation complexity:

• Function evaluation:

2 + 4× 2 + 4× 2 + 2 = 20

• Product:
0 + 4× 1 + 4× 1 + 0 + 1 = 9

• Comparison(for max operator):

1 + 2× 1 + 2× 1 + 1 = 6

1.3.3 Observation

We compare the complexity of two methods in table(1).
The observations:

• By properly using the structure of joint distribution, it’s possible to
reduce computation complexity.

6

Table 1: Comparison Between Two Methods
Items Naive Intelligent

Function 64 20
Product 48 9

Comparison 15 6

• The trick to reduce complexity in the second method is: ”product”
is distributive through ”max”. Thus we can separate some variables
when evaluating the maximum of others. We’ll address this issue in
details later.

• How to reveal and utilize the structure in a systematic way is still a
problem.

1.4 Inference with One Observed Variable

Here’s another example. Assume c is observed to be 1 in the last example.
What’s the new most probable configuration of other variables?

1.4.1 Naive

As before, simply restrict the evaluation of functions only on points where
c = 1.

p(abcd) =

abcd Probability

0010 0.0096
0011 0.0024
0110 0.0256
0111 0.0064
1010 0.0864
1011 0.0216
1110 0.2304
1111 0.0576

(36)

The most probable configuration of the four variables is 1110, and cor-
responding probability is 0.2304(the joint probability, not the probability of
a = 1, b = 1, d = 0 conditioned c = 1).

1.4.2 Intelligent

With the observation of c = 1, the joint distribution can be decomposed as:

max
abd
{p(ab1d)} = max

abd
{p(a)p(b)p(c = 1|b)p(d|c = 1)} (37)

= max
a
{p(a)}max

b
{p(b)p(c = 1|b)}max

d
{p(d|c = 1)}(38)

7

max
a
{p(a)} = max

a
fa(a) = 0.9 (39)

max
b
{p(b)p(c = 1|b)} = max

b
fbc(bc, c = 1) (40)

= max
b

 bc Probability

01 0.12
11 0.32

 (41)

= 0.32 (42)

max
d
{p(d|c = 1)} = max

d

 cd Probability

10 0.8
11 0.2

 (43)

= 0.8 (44)

Thus the final maximum probability is given by:

max
a
{p(a)}max

b
{p(b)p(c = 1|b)}max

d
{p(d|c = 1)} (45)

= 0.9 ∗ 0.32 ∗ 0.8 (46)

= 0.2304 (47)

1.4.3 Observation

Now that we validated the correctness of our intelligent method, we again
compare the complexity as is in table(2).

Table 2: Comparison Between Two Methods
Items Naive Intelligent

Function 32 8
Product 24 4

Comparison 7 3

Besides previous observations on the value of ”structure”, we highlight
one more thing:

• When the variable c is observed, the joint distribution function can
be further decomposed! That is, in previous example, there is a rela-
tionship between b and d, so we evaluate max operator in the order of
b, then c, then d. However, with the observation of c, the sub func-
tions involving b and d are fully decoupled, this further reduces the
complexity.

• This observation is indeed the notion of conditional independence, as
is one major concern in some graphical models like MRF and BN.

8

2 Factor Graph

2.1 Specification

This section is illustrated on white board during the group meeting of Mo-
biTeC.

Roadmap:

• Notion of semiring, distributive law. Generalize the building block
operators. Unify marginalization problem and maximum problem in-
troduced in the motivating example.

• Make graph representation of toy example and conclude the relation-
ship.

• Rule1: connected component can be evaluated on its own.

• The rest part form a chain structure.

• Draw the ”message”, we denoted by µ in the toy example on corre-
sponding edges.

• Draw one trivial message for p(b) to unify the message passing like
process.

• Conclude how function node processes: receive messages; multiply by
local function; marginalization for destination variable; send out new
message.

• Process of variable node is the same. Relationships: 1. local function
is an identity function; 2. since the received messages are marginalized
for itself, the marginalization at a variable node is trivial operation.

• Process of variable and function is unified.

• Conclude possibility to handle a chain.

• Conclude possibility to handle a tree with designated root.

• Conclude possibility to handle a tree without designated root.

This section ends by showing the computation ability of factor graph on
acyclic graph. Next section deals with cycles.

2.2 Transformation

Transformation of loopy factor graph can result in tree structures. Thus
ordinary sum-product algorithm can be used to obtain an exact solution.

Effect of clustering:

9

Figure 1: Transformation: Clustering[4]

• Cluster variable nodes: domain enlarged; no complexity increasing in
local functions; increase complexity in sum-product algorithm (func-
tion evaluation).

• Cluster function nodes: do not increase complexity of variables; in-
crease complxity in sum-product algorithm (sizes of messages are in-
creased).

Figure 2: Transformation: Streching[4]

Effect of stretching:

• Simply stretching variables adds positional variables to some local
functions. Local function complexity is not changed. Variable al-
phabets are enlarged.

• After stretching, redundant links or even redundant variables can be
removed. By systematic stretching, all cycles can be eliminated.

2.3 Parallelization

The major advantage as we have already seen in previous examples is, the
locality of problems structure is captured by Factor Graph. Besides lower-

10

ing the overall computation complexity, Factor Graph totally agrees with
parallelization.

For example, the famous MapReduce framework can be utilized to im-
plement factor graph. Here we provide a short description of how to map
factor graph to MapReduce framework.

• Both function nodes and variable nodes are unified by one type of node,
called unit. As we can see from the deduction of FG, the operations
performed on them are also the same.

• Number of mappers is the same as number of reducers, and the same
as number of units.

• For every mapper, it calculates the multiplication of all current mes-
sages together with the local function, and then summarize it for every
neighbouring nodes. After that, it simply issue all new messages using
the target node ID as the key.

• For every reducer, it collects the list of messages targeted for it and
do nothing. Those collected messages can fit into next round of map.

• We run multiple round of MapReduce until a certain termination cri-
terion is reached.

• To bootstrap the computation, the message list is initialized as an
identity message.

3 Selected Applications

3.1 Model System Dynamics

This section follows the paper:
P. Mirowski and Y. LeCun. Dynamic factor graphs for time series modeling.
Machine Learning and Knowledge Discovery in Databases, v:128–143, 2009.

Declaration: figures in this section are borrowed from the orignal paper[5].
We omit further citation for simplicity.

3.1.1 Quick Note of the Main Idea

Problem settings:

• System is composed of state variables and observation variables.

• Observation function maps state to observation.

• Dynamic function governs state transitions.

11

Figure 3: Single State Dependency(HMM)

• Aim at modeling high dimensional underlying dynamic, probably non-
linear, but deterministc.

When current state is only dependent on previous one state, it is like an
HMM model.

Figure 4: Multiple States and Observation Dependency

The state transition model can be more general that it may depend on
several previous states, or even observations.

Formulation of paramterized FG:

L(W, Y, Z) = E(W, Y) +Rz(Z) +R(W) (48)

Z̃ = arg max
Z

L(W̃, Y, Z) (49)

W̃ = arg max
W

L(W, Y, Z̃) (50)

Since the paper operates in the negative log domain, they want to minimize
L. The more likely some configuration is, the energy E is lower. As is
depicted in fig(), energy function is the square error.

When parameters are fixed, eqn(49) acts as what ordinary factor graph
does, namely, given all explicit function definitions, compute the marginal-
ization problem. In ths application, paramters W is not determined. An
usual way to tackle with this problem is by Expectation-Maximization schema
(sometimes called Generalized Expectation Maximization algorithm). eqn(49)
resembles the E-step, while eqn(50) resembles the M-step.

12

Figure 5: System Details

Figure 6: Training and Evaluation on Superimposed Sine Waves

To decouple 5 superimposed sine waves, the authors choose the architec-
ture:

• 5 dimensional state variable.

• Dynamic function(f): 5 independent FIR filter of order 25.

To capture the observation of 1D variable whose underlying dynamic is
3D-Lorenz curve, the authors choose the architecture:

• 3 dimensional state variable.

• Dynamic function(f): 3 layered convelutional network.

Besides the two evaluation mentioned above, the original paper contains
more. Interested readers can refer to [5] for more information.

3.1.2 Comments

• DFG(in this paper) is basically FG. ”dynamic” only address the ap-
plication aspects, rather than claiming an extension of FG.

13

Figure 7: Training and Evaluation on Lorenz Curve

• The framework of FG is too general. Designing observation function
and state transition function, choice of regularizer, setting coefficients
are really tricky. There doesn’t seem to be a rule of thumb.

• The introduction of unknown parameters and regularizers make the
formulation deviate from ordinary factor graph. Before final marginal-
ization, there is a training stage to obtain opimal paramters.

3.2 Solving Marginalization Problem in Social Network

This section follows the paper:
C. Wang, J. Tang, J. Sun, and J. Han. Dynamic social influence analysis
through time-dependent factor graphs. ASONAM, v:p, 2011.

Declaration: figures in this section are borrowed from the orignal paper
[7]. We omit further citation for simplicity.

3.2.1 Quick Note of the Main Idea

Problem settings:

• Graph Gt =< V t, Et >. V corresponds to people in a certain social
network. E corresponds activity relationships. There is a real valued
wegith function w defined on E.

• Graph Gt captures time varying relationships.

• Definition of w is problem(application) specific.

• Want to find the pairwise influence µij . Denote the node to influence
node i by yi, a random variable . µij is P (yi = j).

When defined on the static version, one µij is output for each i, j. When

defined on the dynamic version, a vectore (µ
(t)
ij) is output.

Two definitions to facilitate further description:

14

Figure 8: Problem Definition

• NB(i): the neighbourhood of i. (More precisely, vi, this is defined on
the original graph)

• SC(i) = NB(i) ∪ i.

More precisely, yi should be linked to vj , ∀j ∈ NB(i) in the FG depicted
in fig(). This can be justified through the definition of node factor function.

The definition of node factor function and link factor function, together
with the observation of G removes complex links from yi to V . The resultant
FG can be viewed as one single layer with yi vertices as variable nodes.
Function nodes gi(yi) are completely defined with the observation of G.

Note that there is one parameter u in the choice of link factor function.
If not for this paramter, the FG in this paper was able to marginalize each yi
directly and give the influence using µij = P (yi = j). Again, the parameter
estimation can be done using EM schema.

In order to capture the time varying property of social influence, the
authors augmented original static FG to be time-dependent FG. Bridging
function nodes are added between two time consecutive sub graphs. For
detailed discussion, please refer to original paper.

Since the current section aims at modeling, details of algorithms are
omitted. However, it’s worth referring to the original paper for a specialized
message passing algorithm named SIP(Social Influence Propagation) by the
authors. That algorithm works more efficiently than general junction tree
algorithms.

3.2.2 Comments

• Modeling an FG is rather easy. However, coming up with right choice
of functions and paramters are difficult.

15

Figure 9: Visualization of the Factor Graph

Figure 10: Choice of Node Factor Function

• In this paper, the authors used heuristics to generate wij , which is a
very important raw data. After the calculation of wij , the FG and so
does the marginalizations are fully defined.

• The original itention(we’ve already shown that at the beginning of
this article) of FG is to reduce complexity by utilizing graphical struc-
tures. However, the compuation in practice is still a concern. How to
carefully design the algorithm to perform marginalization under the
message passing framework according to physical meanings will be an
interesting and chanllenging problem.

Figure 11: Choice of Link Factor Function

16

Figure 12: Factor Graph with Time Dependency

3.3 Short Summary on the Application of FG

• Framework and general algorithm is mature both in theory and in
practice.

• Original FG can be used to solve marginalization problem directly.
At this point, FG can be think of as a problem solver rather than
a model. For this flavour, please refer to Bishop’s book [1], Chapter
8. The author begins with BN and MRF which model directed and
undirected independencies. In order to solve the inference problem,
the author propose to convert BN and MRF to FG.

• According to different backgrounds, different authors come up with
different Paramterized Factor Graph. Most of the works include two
efforts:

– Heuristics to determine paramters.

– Iterative methods to determine paramters. (EM schema)

Solving marginalization in FG is one sub problem then. Before giving
the final marginalized answer, there is a training stage.

• Specific message passing algorithms are worth investigating. As is
in [7], the authors propose SIP, specialized for their problem. The
resulting algorithm is more tractable than general solvers.

4 Other Taste of Modeling

4.1 Coding

Besides modeling probability problems, people also use FG to model certain
codes.

17

Consider a parity checking matrix given by H:

H =

1 1 0 0 1 0
0 1 1 0 0 1
1 0 1 1 0 0

 (51)

In the corresponding factor graph, each factor node corresponds to one
row and each variable node corresponds to one column. The type of the
functions are indicators testing the predicate: [xi1 ⊕ xi2 ⊕ xi1 = 0]. Note
that the logic ”∩” operator can be regarded as ”product”. This kind of
modeling is called behavioural modeling in [4].

Figure 13: A Parity Code Modeled by FG[4]

4.2 Subgame Perfect Equilibrium

Interestingly, to search the subgame perfect equilibrium of an extensive
game, we can use factor graph. For detailed course materials on extensive
game, interested readers can refer to [6].

We know that to find the Nash Equilibrium of a game, one can enumerate
the set of strategy profiles, and check for every player whether he can gain
by deviation. This method is time-consuming, since it is no more than
the definition of an equilibrium. However, subgame perfect equilibrium can
be found much more efficiently with the help of One Deviation Property
Lemma[6]. The lemma says, for every subgame of original game, we only
need to check whether the first move is optimal or not. More intuitively, we
can do backward deduction on the tree from leaves to root.

Note that in our introduction to FG, the example that we marginalize
for a tree structure with a designated root fits this compuation very well.

5 Related Models/Algorithms

Models:

• Bayesian Network. Directed Graphical Model.

18

• Markov Random Field. Undirected Graphical Model.

• Chain Graph. Directed + Undirected.

• Factor Graph.

Figure 14: Venn Graph of Several Graphical Models

Justification of modeling ability:

• BN → MRF. The moralization process hides certain stucture previ-
ously available in BN.

• MRF. An example of square located 4 nodes. If two diagonal variables
are observed, the other two variables become independent. BN can not
express such information.

• CG. Since both directed and undirected, it forms the superset of the
union of BN and MRF.

• FG. Converting CG to FG reveals more details, namely, how the joint
distribution is factorized(usually, one explicit normalization function
exhibits). BTW, FG can model not only probabilistic problems, but
also other problems like system dynamics and coding. It is super
general in the sense.

Algorithms:

• Junction tree.

• Bayesian ball.

• (Loopy)Belief propagation.

• Sum-product.

19

6 Discussions

Since the development of factor graph is boosted in the past decade, differ-
ent authors come up with different description of similar problems. Not to
distinguish right from wrong, I just regard those stuffs out there as incon-
sistent. My opinion on some parts of past literature:

• In Bishop’s book[1], chapter 8.4.5, P411. The example is not good. Ac-
tually, when talking about that probability maximization problem, we
should know ”product” corresponds to product operator, and ”sum”
corresponds to max operator. In this case, the maginalization opera-
tion for a single varialbe is indeed the maximization for each instancde
of that variable. Using local marginalized function(max), we can cer-
tainly get the global probability maximization point considering all
variables.

• As for Dynamic Factor Graph, the author of this paper do not advocate
the abuse of this term like an extension of factor graph. FG itself is able
to model system dynamics, as we’ve already seen in those examples
above. Other authors may use the term DFG [7] [5] , but their DFG
is application specific. Those graphs are essentially FG. Not until we
examine the physical meaning of some factor nodes do we realize their
”dynamic” property.

Acknowledgements

References

[1] C.M Bishop. Pattern recognition and machine learning, volume 4.
springer New York, 2006.

[2] B.J. Frey. Extending factor graphs so as to unify directed and undi-
rected graphical models. In Proc. 19th Conf. Uncertainty in Artificial
Intelligence, pages 257–264, 2003.

[3] B.J. Frey, F.R. Kschischang, H.A. Loeliger, and N. Wiberg. Fac-
tor graphs and algorithms. In PROCEEDINGS OF THE AN-
NUAL ALLERTON CONFERENCE ON COMMUNICATION CON-
TROL AND COMPUTING, volume 35, pages 666–680. UNIVERSITY
OF ILLINOIS, 1997.

[4] F.R. Kschischang, B.J. Frey, and H.A. Loeliger. Factor graphs and the
sum-product algorithm. Information Theory, IEEE Transactions on,
47(2):498–519, 2001.

20

[5] P. Mirowski and Y. LeCun. Dynamic factor graphs for time series mod-
eling. Machine Learning and Knowledge Discovery in Databases, v:128–
143, 2009.

[6] M.J. Osborne and A. Rubinstein. A course in game theory. The MIT
press, 1994.

[7] C. Wang, J. Tang, J. Sun, and J. Han. Dynamic social influence analysis
through time-dependent factor graphs. ASONAM, v:p, 2011.

[8] Moral Graph, Wikipedia, http://en.wikipedia.org/wiki/Moral_

graph

[9] Markov Blanket, Wikipedia, http://en.wikipedia.org/wiki/

Markov_blanket

21

